WHAT ARE THE EXISTING METHODS TO TEST OLTCs?

WHY VIBRO-ACOUSTIC METHOD?

RECOGNIZED BY CIGREE AND IEEE

The vibro-acoustic method was developed and tested in the field by Hydro-Québec for over 20 years. Its diagnostic potential has been recognized in two transformer maintenance guides: **IEEE.PC57.143** and **Cigré A2.34**.

THE TAP-4

The TAP-4, designed for transformers testing, was created in 2008. It became the first portable instrument using the vibro-acoustic method to perform tests on On-Line Tap Changers (OLTC).

Since then, Zensol has also introduced to the market other instruments for OLTC testing: the OTM-X and the TAP-4-PLUS.

LIKE A STETHOSCOPE

Just like a stethoscope, our units listen to the heartbeat of your OLTC without opening it. They can create a complete overview of the internal state and can detect a wide variety of mechanical and electrical malfunctions.

ABLE TO TEST ALL OLTCs

Our units are able to test all OLTC types such as: resistor, reactor or vacuum, of any brands (Maschinenfabrik Reinhausen (MR), ABB, Federal Pioneer, Ferranti, etc.).

RUGGED AND RELIABLE

Their portability and resistance to impacts and extreme climate conditions make them precious and highly appreciated instruments.

The table on page 4 summarizes the advantages of each testing method.

WHAT IS THE OTM-X?

STANDALONE OLTC EVENT RECORDER

The OTM-X is the only standalone recorder on the market using the vibroacoustic method and the motor current test. The OTM-X records every tap change operation, whether the transformer is ONLINE or OFFLINE.

You can access your data wherever you are at any time through the OTM-X's ethernet connection.

CHARACTERISTICS COMPARISON: TAP-4, TAP-4-PLUS, OTM-X

	TAP-4	TAP-4-PLUS	OTM-X
Sampling frequency	100 kHz	100 kHz	100 kHz and less
Sampling time microseconds (µs)	10 µs	10 μs	10 μs and more
Analog inputs (-10V to +10V)	1	3	3
Accelerometer inputs	3	3	3
External Trigger	YES	YES	YES
Dynamic Resistance capability (DRM)	NO	YES	YES
Standalone	NO	NO	YES

The analysis of vibration signals requires a sampling frequency of at least 100kHz. A lower sampling frequency is unacceptable because the recordings have a poor quality.